魏云峰

发布者:统计与数据科学学院发布时间:2017-03-15浏览次数:3718











基本情况:

魏云峰    中共党员

最后学位:博士

岗位职称:副教授

研究领域:非线性偏微分方程及其应用

通讯地址:南京市浦口区雨山西路86

 编:211815

Email: weiyunfeng@nau.edu.cn

教育经历:

2016.09-2020.09 工学博士  河海大学  专业:现代力学数学基础导师:陈才生教授;    

2005.9-2008.04  理学硕士 东南大学 专业:应用数学导师:王明新教授;   

2001.09-2005.06  理学学士  阜阳师范学院 专业:数学与应用数学。

工作经历:

2021.07-至今    南京审计大学副教授

2011.05-2021.07 南京审计大学讲师

2008.05-2011.05   南京审计大学助教

教学情况:

1.教学课程:高等数学、微积分、线性代数、概率论与数理统计等。

2.教学获奖:获南京审计大学统计与数据科学学院第一届青年教师教学竞赛三等奖。

3.指导学生获奖:多次参与指导学生参加学校、江苏省高等学校高等数学竞赛并获奖。

科研情况:

1.代表性期刊论文:

[1]. Yunfeng Wei *, Hongwei Yang, Hongwang Yu, Rui Hu. Stable solutions to quasilinear Schrödinger equations of Lane-Emden type with a parameter. Math. Methods Appl. Sci. 44 (2021), no. 13, 9987-9997. (SCI)

[2]. Yunfeng Wei*, Caisheng Chen, Zonghu Xiu, Hongwang Yu,Nonexistence of positive solutions to a class of generalized quasilinear Schrödinger equations. Appl. Math.Lett. 121 (2021), Paper No. 107470, 6 pp.  (SCI)

[3]. Yunfeng Wei*, Hongwei Yang, Hongwang Yu. On stable solutions of the weighted Lane-Emden equation involving Grushin operator. AIMS Math. 6 (2021), no. 3, 2623-2635. (SCI)

[4]. Yunfeng Wei*, Hongwei Yang, Hongwang Yu. Stable weak solutions to weighted Kirchhoff equations of Lane-Emden type. Adv. Difference Equ. 2021, Paper No. 27, 14 pp.(SCI)

[5]. Yunfeng Wei*, Caisheng Chen, Hongwei Yang, Hongwang Yu. Existence of weak solutions for quasilinear Schrödinger equations with a parameter. Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 41, 20 pp. (SCI)

[6].Yunfeng Wei*, Caisheng Chen, Hongwei Yang. Liouville-type theorem for Kirchhoff equations involving Grushin operators. Bound. Value Probl. 2020, Paper No. 13, 18 pp. (SCI)

[7].Yunfeng Wei*, Caisheng Chen, Qiang Chen, Hongwei Yang. Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators. Math. Methods Appl. Sci. 2020, 43(1), 320-333. (SCI)

[8]. Yunfeng Wei*, Caisheng Chen, Hongwei Yang. Liouville-type theorem for stable solutions of the Kirchhoff equation with negative exponent. Journal of Mathematical Research with Applications. 2020, 40(4), 397-404 (CSCD)

[9]. Yunfeng Wei*, Caisheng Chen, Hongxue Song, Hongwei Yang. Liouville-type theorems for stable solutions of Kirchhoff equations with exponential and superlinear nonlinearities. Complex Var. Elliptic Equ. 2019, 64(8), 1297-1309. (SCI)

[10]. Yunfeng Wei*, Caisheng Chen, Hongwei Yang, Hongxue Song. Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions. Bound. Value Probl. 2018, Paper No. 78, 18 pp. (SCI)

[11]. Qiang Chen*, Caisheng Chen, Yunfeng Wei, Yanlin Shi.  Multiple Solutions for a Class of System of (p, q)-Kirchhoff Equations in R^N. J. Dyn. Control Syst. 27(2021), no. 3, 557-572. (SCI)

[12]. Zonghu Xiu*, Caisheng Chen, Yunfeng Wei. Nonexistence of solutions for quasilinear Schrödinger equations in R^N. Appl. Math. Lett. 2020, 105, 106310.(SCI)

[13].Hongxue Song*, Yunfeng Wei. Multiple solutions for quasilinear nonhomogeneous elliptic equations with a parameter. (Chinese) Acta Math. Sci. Ser. A (Chin. Ed.) 2019, 39(2), 286-296. (CSCD)

[14]. Caisheng Chen*, Yunfeng Wei. Existence, nonexistence, and multiple results for the fractional p-Kirchhoff-type equation in R^N. Mediterr. J. Math. 2016,13(6), 5077-5091. (SCI)

[15]. Minxing Wang*, Yunfeng Wei. Blow-up properties for a degenerate parabolic system with nonlinear localized sources. J. Math. Anal. Appl. 343 (2008), no. 2, 621-635. (SCI)

[16]. 魏云峰*, 带非局部源退化奇异抛物方程组的爆破,《阜阳师范学院学报:自然科学版》,2010, (3), 18-22. 

[17]. 魏云峰*, 带非局部源退化奇异抛物方程组的一致爆破模式《淮北煤炭师范学院学报:自然科学版》,2010, (4), 10-14.

[18].魏云峰*, 带有非局部源的退化奇异半线性抛物方程组的爆破,《南京审计学院学报》2009,(1),81-85.

2. 主持及参与项目情况:

[1]. 全空间上几类拟线性椭圆型方程解的定性研究,19KJD100002, 江苏省高校自然科学研究面上项目,2009/09-2020/12, 主持。

[2].拟线性薛定谔方程及其相关问题研究, 2021SZJJ004, 南京审计大学“数字经济”应急管理项目,2021/12-2023/12,主持。

[3].随机多层动态网络的有限时间稳定性分析与优化控制, 62176127,国家自然科学基金面上项目,2022/01-2025/12参与。

[4].基于场景需求的拉格朗日相干结构的欧拉算法研究,BK20211293江苏省自然科学基金面上项目,2021/07-2024/06,参与。

[5].具有延迟巨额理赔风险的保险公司破产概率近似估计与最优投资策略研究 ,20YJCZH034,教育部人文社会科学基金项目,2020/01-2022/12,参与。