尤国桥

发布者:统计与数学学院发布时间:2015-12-15浏览次数:2440


南京审计大学统计与数据科学学院

尤国桥


最后学位:香港科技大学 理学博士

岗位职称:副教授

研究领域:计算数学

教学课程:《运筹学》、《概率论与数理统计》、《线性代数》等


办公室:竞慧西楼414

电话:  58318699

Email:  270217@nau.edu.cn

通讯地址:南京市浦口区雨山西路86

邮  编:211815


受教育经历

香港科技大学 (2010-2014)  博士,计算数学专业

上海交通大学 (2005-2009)    理学学士, 数学与应用数学专业


研究工作经历

2015.10-2018.9 南京审计大学 讲师

2018.10-present南京审计大学 副教授


获奖情况

入选江苏省“双创博士


主持项目

 1. 国家自然科学基金青年项目,11701287,基于水平集方法的拉格朗日相干结构提取算法的研究,2018/01-2020/12,主持。

 2. 江苏省自然科学基金青年项目,BK20171071,计算拉格朗日相干结构的欧拉方法,2017/07-2020/06,主持。

 3.江苏省高校自然科学研究面上项目,16KJB110012,一些高效的研究动力系统的欧拉算法,2016/09-2018/08,主持。

代表性期刊论文

1. Global existence of solutions to the Cauchy problem of a two dimensional attraction-repulsion chemotaxis system, accepted by Nonlinear Analysis: Real World Applications. 


2. Fast Construction of Forward Flow Maps using Eulerian Based Interpolation Schemes, Journal of Scientific Computing, 2020, 82(2):32. (First Author & Corresponding Author) 


3. Fast Computations for the Lagrangian-averaged Vorticity Deviation Based on the Eulerian Formulations, International Journal of Computational Methods, 202017(9):1950078. (First Author & Corresponding Author)


4. Recent Developments in Eulerian Approaches for Visualizing Continuous Dynamical Systems, Proceedings of the Seventh International Congress of Chinese Mathematicians, 2019, 2:579-622.


5. An Improved Eulerian Approach for the Finite Time Lyapunov Exponent, Journal of Scientific Computing, 2018, 76(3):1407-1435. (First Author & Corresponding Author)


6. An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data, Journal of Scientific Computing, 2018, 76(1):120-144. (First Author & Corresponding Author)


7. A class of fast fixed-time synchronization control for the delayed neural network, Journal of the Franklin Institute, 2018, 355(1): 164-176.


8. Eulerian Based Interpolation Schemes for Flow Map Construction and Line Integral Computation with Applications to Coherent Structures Extraction, Journal of Scientific Computing, 2018,74(1): 70-96. (First Author)


9. Eulerian Methods for Visualizing Continuous Dynamical Systems using Lyapunov Exponents, SIAM Journal on Scientific Computing, 2017, 39(2): A415-A437. (First Author)

10. A Fast Semi-Implicit Level Set Method for Curvature Dependent Flows with an Application to Limit Cycles Extraction in Dynamical Systems, Communications in Computational Physics,2015, 18(1): 203-229. (First Author)

11. VIALS: An Eulerian Tool Based on Total Variation and the Level Set Method for Studying Dynamical Systems, Journal of Computational Physics, 2014, 266: 139-160. (First Author)

12. An Eulerian Method for Computing the Coherent Ergodic Partition of Continuous Dynamical Systems, Journal of Computational Physics, 2014, 264: 112-132. (First Author)